

Underwater Robot-To-Human Communication Via Motion:

Implementation and Full-Loop Human Interface Evaluation

Michael Fulton, Muntaqim Mehtaz, Owen Queeglay, Junaed Sattar Interactive Robotics and Vision Lab, University of Minnesota Twin Cities

Underwater HRI Background

- Developing over the last 15 years due to \succ the emergence of human-portable AUVs.
- Intended to allow collaboration between \succ humans and AUVs in underwater work.
- AUV-to-human communication: *
 - Digital displays are the only prevalent \succ form of robot-to-human communication.
 - Displays have a limited distance and \succ orientation of communication.
- Can more natural. human-like communication be used?

ROBOTICS SCIENCE AND SYSTEMS

ROBOTICS SCIENCE AND SYSTEMS

Robot Communication Via Motion

- Definition: Kineme
 - A sequence of robot motion with an associated semantic meaning.
 - Mimics human body language/gestures.
- Originally proposed and evaluated for simulated AUVs.
 - Kineme communication outperformed light-based communication in simulation.
- How will RCVM perform in the real world, compared to alternatives?

RCVM

Motion as a form of communication.

The "Follow Me" kineme on the Aqua AUV.

Comparison Systems

LED Array of 3 LEDs.

The "Follow Me" LED code.

The "Follow Me" LCD display.

TTS English phrase played audibly.

The "Follow Me" audio cue.

Pilot Study

- We performed a small pilot study evaluating RCVM efficacy:
 - In the real world.
 - > In the context of a full interaction loop.
- Participants trained in the use of RCVM asked a question, received a response via a kineme, took action.
- Results: Kinemes are recognized with lower accuracy than simulation, but still at a reasonable rate (60%).

Multi-Dimensional Study

- We performed a study evaluating the efficacy of RCVM:
 - Compared to three other systems.
 - > At 5 different viewpoints.
- Study was administered online:
 - > 130 participants (9 excluded from data)
 - > Participants trained on ideal viewpoint.
 - Recognition of phrases tested on a random viewpoint, same system.
- Lower RCVM accuracy overall than in pilot study, likely due to online environment.

Viewpoints of an Affirmative kineme, tested in the third study. Clockwise from top left: 90°, 45°, 8m, 3m, 5m

Viewpoint Effect on Communication SCIENCE AND SYSTEMS

Operational Accuracy vs. Viewpoint

In this plot, y-axis has been square root scaled to better display information Line at 7% represents the accuracy of a random guess.

Summary

- Continued to establish RCVM as an option for AUVs.
- We conducted two studies:
 - Our pilot study demonstrated 60% overall kineme recognition accuracy.
 - Our multi-dimensional study explored the effect of viewpoint and content on interaction efficacy for four systems.
- Kinemes can be recognized with reasonable accuracy, and are less negatively affected by viewpoint.

A diver and AUV preparing to communication with one another.

Thanks to all our IRV Lab colleagues, Sophie Fulton, Khiem Vuong, Chelsey Edge, Jungseok Hong, and our funding partners: the National Science Foundation and the Minnesota Robotics Institute