

Predicting the Future Motion of Divers for Enhanced Underwater Human-Robot Collaboration

Tanmay Agarwal, Michael Fulton, Junaed Sattar

International Conference on Intelligent Robots and Systems (IROS) 2021

Why is this important?

Why do we need predictions for diver following or leading?

1. Challenges in current methods:

Source: Interactive Robotics and Vision Lab, University of Minnesota

Source: McGill Mobile Robotics Lab

2. Enabling robot leading behaviors

What methods might work best?

LSTMs

Image source:

K. Greff et. al. "LSTM: A Search Space Odyssey" in IEEE Transactions on Neural Networks and Learning Systems, 2016.

Social-LSTM

Image source (both):

A. Alahi et. al. "Social-LSTM: Human Trajectory Prediction in Crowded Spaces" in IEEE Computer Vision and Pattern Recognition (CVPR) 2016

Challenges

- 1. Pedestrian Algorithms 2D Representation
- 2. Camera Ego Motion

Hotel Dataset

ETH Dataset

Solutions

1. Propagate 2 points

Solutions

2. Stabilize Bounding Boxes

Initial Dense Optical Flow

Bounding Box Removed

Stabilized Boxes

Training Methodology

Video Diver Dataset (VDD):

Box Normalized Average Centroid Error

$$\frac{x_i}{box_{width}}$$
 , $\frac{y_i}{box_{height}}$

Image Normalized Average Centroid Error

Average Intersection Over Union

Predicted Frame Legend for Diver 1

Predicted Frame Legend for Diver 2

Failure Cases

(a) Last Observed Frame

(b) Predicted Boxes 50 Frames in the future

(c) Last Observed Frame

(d) Predicted Boxes 100 Frames in the future

Inference Time

Model Type	Vanilla LSTM	Social LSTM
Stabilized	558 ms	772 ms
Unstabilized	$527 \mathrm{\ ms}$	$737 \mathrm{ms}$

Table 4.1: Inference Time on a Jetson TX2

Inference Time: 0.5 s

Prediction Length: 1.5 s

Conclusion

- First method for prediction of diver motion
- Adapted Social and Vanilla LSTM
- Introduced an optical flow based stabilization method
- Reliable Predictions **1.5 seconds** into the future
- Inference rate of **2 Hz**

Future Work

- New methods for trajectory estimation
- Datasets recorded from a robot's perspective
- Encode diver features (such as pose, orientation) into the LSTM state