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https://docs.google.com/file/d/1qZ1qVUTubcBgpa4eblODY40N0onYtiLf/preview

Why is this important?
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Why do we need predictions for diver
following or leading?



1. Challenges in current methods:

Source: Interactive Robotics and Vision Lab, University of
Minnesota

Source: McGill Mobile Robotics Lab

2. Enabling robot leading behaviors


https://docs.google.com/file/d/1otoaoTrcJXZwyE6oZOwwMkzRviBNoE-F/preview
https://docs.google.com/file/d/1bstWYgWtI6KNrCyDfdC7qpqVpqXFyDE-/preview

What methods might work best?
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Image source:
K. Greff et. al. “LSTM: A Search Space Odyssey" in IEEE Transactions on Neural Networks and Learning Systems, 2016.
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Image source (both):
A Alahi et. al. “Social-LSTM: Human Trajectory Prediction in Crowded Spaces” in IEEE Computer Vision and Pattern Recognition (CVPR) 2016



Challenges

1. Pedestrian Algorithms - 2D Representation
2. Camera Ego Motion

ETH Dataset Hotel Dataset



Solutions
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Solutions

2. Stabilize Bounding Boxes
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Training Methodology

Video Diver
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Sequence of 121 Frames

Optical Flow Stabilization
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https://conservancy.umn.edu/handle/11299/219383

Results

Box Normalized Average Centroid Error

Box Normalized Average Centroid Error of different LSTM networks
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Results

Image Normalized Average Centroid Error

Image Normalized Average Centroid Error

Image Normalized Average Centroid Error of different LSTM networks
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Results

Average Intersection Over Union

Average |OU
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Results

(f) SLSTM Stabilized (g) SLSTM Unstabilized (h) VLSTM Stabilized (1) VLSTM Unstabilized (j) True Future Motion

(k) SLSTM Stabilized (I) SLSTM Unstabilized (m) VLSTM Stabilized (n) VLSTM Unstabilized (o) True Future Motion
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Failure Cases

(a) Last Observed Frame ) Predicted Boxes 50 Frames in the future

(¢) Last Observed Frame (d) Predicted Boxes 100 Frames in the future




Inference Time

Model Type | Vanilla LSTM | Social LSTM
Stabilized 558 ms 772 ms
Unstabilized 527 ms 737 ms
Table 4.1: Inference Time on a Jetson TX2

Inference Time: 0.5 s

Prediction Length: 15 s




Conclusion

First method for prediction of diver motion

Adapted Social and Vanilla LSTM

Introduced an optical flow based stabilization method
Reliable Predictions 1.5 seconds into the future
Inference rate of 2 Hz



Future Work

e New methods for trajectory estimation

e Datasets recorded from a robot's perspective

e Encode diver features (such as pose, orientation) into the LSTM
state



